Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Peter G. Jones,<sup>a</sup>\* Peter Bubenitschek,<sup>b</sup> Henning Hopf<sup>b</sup> and Reiner Stamm<sup>b</sup>

<sup>a</sup>Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and <sup>b</sup>Institut für Organische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail: p.jones@tu-bs.de

#### Key indicators

Single-crystal X-ray study T = 178 K Mean  $\sigma$ (C–C) = 0.003 Å R factor = 0.042 wR factor = 0.115 Data-to-parameter ratio = 24.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved The title compound,  $C_{16}H_{30}Si_2$ , possesses crystallographic inversion symmetry. The allenic bond lengths are 1.309 (2) and 1.314 (2) Å.

Received 9 December 2002 Accepted 11 December 2002 Online 10 January 2003

## Comment

As the cumulogues of conjugated dienes, conjugated bisallenes are of interest for preparative (*e.g.* as partners in cycloaddion reactions; Sankararaman *et al.*, 2000) and structural reasons. The structure of the parent system 1,2,4,5hexatetraene in solution and in the gas phase has been described (Christensen *et al.*, 1973; Traetteberg *et al.*, 1973). Since structural data for this class of hydrocarbon are still scarce, we decided to prepare 2,7-dimethyl-4,5-bis(trimethylsilyl)octa-2,3,5,6-tetraene, (2), a fully substituted bis-allene, and investigate it by X-ray structural analysis. As a precursor we used 2,7-dimethylocta-2,4,5,6-tetraene, (1), whose solidstate structure we have reported recently (Jones *et al.*, 2002).



The structure of (2) is shown in Fig. 1. The molecule possesses a crystallographic inversion centre at the midpoint of the C4–C4<sup>i</sup> bond [symmetry code: (i) 1 - x, -y, 1 - z]. Bond lengths and angles [*e.g.* the allenic bond lengths of 1.309 (2) and 1.314 (2) Å] may be considered normal [*cf.* 1.3067 (16) and 1.3126 (16) Å in (1); Jones *et al.*, 2002]. The planes C1/2/3/5 and Si/C3/4/4<sup>i</sup> are mutually perpendicular [interplanar angle 88.49 (8)°].

The packing (Fig. 2) is unexceptional. The shortest  $H \cdots H$  contacts are  $H6A \cdots H8A(1 - x, 1 - y, -z) = 2.53 \text{ Å}$  and  $H7B \cdots H8C(1 + x, y, z) = 2.52 \text{ Å}$ .

### **Experimental**

Compound (1) was metallated with *n*-butyllithium in thf in the presence of tetramethylethylenediamine, and the resulting dianion was then quenched with trimethylsilylchloride (Stamm, 1992). Recrystallization of (2) from pentane afforded single crystals.

| Crystal data                   |                                           |  |
|--------------------------------|-------------------------------------------|--|
| $C_{16}H_{30}Si_2$             | Z = 1                                     |  |
| $M_r = 278.58$                 | $D_x = 0.986 \text{ Mg m}^{-3}$           |  |
| Triclinic, P1                  | Mo $K\alpha$ radiation                    |  |
| a = 6.363 (2)  Å               | Cell parameters from 50                   |  |
| b = 8.963 (2)  Å               | reflections                               |  |
| c = 9.157 (3)  Å               | $\theta = 10-11.5^{\circ}$                |  |
| $\alpha = 70.76 \ (2)^{\circ}$ | $\mu = 0.18 \text{ mm}^{-1}$              |  |
| $\beta = 72.13 \ (2)^{\circ}$  | T = 178 (2) K                             |  |
| $\gamma = 83.41 \ (2)^{\circ}$ | Prism, colourless                         |  |
| $V = 469.2 (2) \text{ Å}^3$    | $0.70 \times 0.25 \times 0.15 \text{ mm}$ |  |



#### Figure 1

The molecule of compound (2) in the crystal. Ellipsoids are drawn at the 50% probability level. H-atom radii are arbitrary.

 $h = 0 \rightarrow 8$ 

 $k = -11 \rightarrow 11$ 

 $l=-11\rightarrow 11$ 

3 standard reflections

every 147 reflections

intensity decay: none

 $w = 1/[\sigma^2(F_o^2) + (0.056P)^2]$ 

where  $P = (F_o^2 + 2F_c^2)/3$ 

+ 0.1101P]

 $(\Delta/\sigma)_{\rm max} < 0.001$ 

 $\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$ 

#### Data collection

Nicolet R3 diffractometer  $\omega$  scans 2355 measured reflections 2162 independent reflections 1613 reflections with  $I > 2\sigma(I)$   $R_{\text{int}} = 0.015$  $\theta_{\text{max}} = 27.6^{\circ}$ 

#### Refinement

Refinement on  $F^2$   $R[F^2 > 2\sigma(F^2)] = 0.042$   $wR(F^2) = 0.115$  S = 1.022162 reflections 87 parameters H-atom parameters constrained

#### Table 1

Selected geometric parameters (Å, °).

| C2-C3<br>C3-C4 | 1.309 (2)<br>1.314 (2) | C4-C4 <sup>i</sup>                                          | 1.501 (3)   |
|----------------|------------------------|-------------------------------------------------------------|-------------|
| C2-C3-C4       | 174.86 (18)            | $\begin{array}{c} C3{-}C4{-}Si\\ C4^i{-}C4{-}Si\end{array}$ | 116.38 (13) |
| $C3-C4-C4^{i}$ | 121.56 (19)            |                                                             | 122.06 (16) |

Symmetry code: (i) 1 - x, -y, 1 - z.





Methyl H atoms were identified in difference syntheses, idealized and then refined using rigid methyl groups (C-H = 0.98 Å and H-C-H =  $109.5^{\circ}$ ), allowed to rotate but not tip.

Data collection: P3 (Nicolet, 1987); cell refinement: P3; data reduction: XDISK (Nicolet, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Mr A. Weinkauf for technical assistance.

## References

Christensen, D. H., Hopf, H., Klaeboe, P. & Powell, D. L. (1973). Spectrochim. Acta Part A, 29, pp. 7–9.

Jones, P. G., Bubenitschek, P., Hopf, H. & Stamm, R. (2002). Acta Cryst. E58, 0277–0278.

Nicolet (1987). P3 and XDISK. Nicolet Instrument Corporation, Madison, Wisconsin, USA.

Sankararaman, S., Hopf, H., Dix., I. & Jones, P. G. (2000). Eur. J. Org. Chem. pp. 2699–2702.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Stamm, R. (1992). PhD thesis, Technical University of Braunschweig, Germany.

Traetteberg, M., Paulen, G. & Hopf, H. (1973). Acta Chem. Scand. 27, 2227-2229.