Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter G. Jones, ${ }^{\text {a }}{ }^{*}$ Peter
 Bubenitschek, ${ }^{\text {b }}$ Henning Hopf ${ }^{\text {b }}$ and Reiner Stamm ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study
$T=178 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.042$
ωR factor $=0.115$
Data-to-parameter ratio $=24.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2,7-Dimethyl-4,5-bis(trimethylsilyl)octa-2,3,5,6-tetraene

The title compound, $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{Si}_{2}$, possesses crystallographic inversion symmetry. The allenic bond lengths are 1.309 (2) and 1.314 (2) Å.

Comment

As the cumulogues of conjugated dienes, conjugated bisallenes are of interest for preparative (e.g. as partners in cycloaddion reactions; Sankararaman et al., 2000) and structural reasons. The structure of the parent system 1,2,4,5hexatetraene in solution and in the gas phase has been described (Christensen et al., 1973; Traetteberg et al., 1973). Since structural data for this class of hydrocarbon are still scarce, we decided to prepare 2,7-dimethyl-4,5-bis(trimethyl-silyl)octa-2,3,5,6-tetraene, (2), a fully substituted bis-allene, and investigate it by X-ray structural analysis. As a precursor we used 2,7-dimethylocta-2,4,5,6-tetraene, (1), whose solidstate structure we have reported recently (Jones et al., 2002).

The structure of (2) is shown in Fig. 1. The molecule possesses a crystallographic inversion centre at the midpoint of the $\mathrm{C} 4-\mathrm{C} 4{ }^{\mathrm{i}}$ bond [symmetry code: (i) $1-x,-y, 1-z$]. Bond lengths and angles [e.g. the allenic bond lengths of 1.309 (2) and 1.314 (2) Å] may be considered normal [cf. 1.3067 (16) and 1.3126 (16) \AA in (1); Jones et al., 2002]. The planes $\mathrm{C} 1 / 2 / 3 / 5$ and $\mathrm{Si} / \mathrm{C} 3 / 4 / 4^{\mathrm{i}}$ are mutually perpendicular [interplanar angle 88.49 (8) ${ }^{\circ}$].

The packing (Fig. 2) is unexceptional. The shortest $\mathrm{H} \cdots \mathrm{H}$ contacts are $\mathrm{H} 6 A \cdots \mathrm{H} 8 A(1-x, 1-y,-z)=2.53 \AA$ and $\mathrm{H} 7 B \cdots \mathrm{H} 8 C(1+x, y, z)=2.52 \AA$.

Experimental

Compound (1) was metallated with n-butyllithium in thf in the presence of tetramethylethylenediamine, and the resulting dianion was then quenched with trimethylsilylchloride (Stamm, 1992). Recrystallization of (2) from pentane afforded single crystals.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{Si}_{2}$	$Z=1$
$M_{r}=278.58$	$D_{x}=0.986 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=6.363(2) \AA$	Cell parameters from 50
$b=8.963(2) \AA$	reflections
$c=9.157(3) \AA$	$\theta=10-11.5^{\circ}$
$\alpha=70.76(2)^{\circ}$	$\mu=0.18 \mathrm{~mm}^{-1}$
$\beta=72.13(2)^{\circ}$	$T=178(2) \mathrm{K}$
$\gamma=83.4(2)^{\circ}$	Prism, colourless
$V=469.2(2) \AA^{\circ}$	$0.70 \times 0.25 \times 0.15 \mathrm{~mm}$

Received 9 December 2002
Accepted 11 December 2002
Online 10 January 2003

Figure 1
The molecule of compound (2) in the crystal. Ellipsoids are drawn at the 50% probability level. H-atom radii are arbitrary.

Data collection

Nicole $R 3$ diffractometer
ω scans
2355 measured reflections
2162 independent reflections
1613 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=27.6^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.115$
$S=1.02$
2162 reflections
87 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{C} 2-\mathrm{C} 3$	$1.309(2)$	$\mathrm{C} 4-\mathrm{C} 4^{\mathrm{i}}$	$1.501(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.314(2)$		
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$174.86(18)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Si}$	$116.38(13)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4^{\mathrm{i}}$	$121.56(19)$	$\mathrm{C} 4-\mathrm{C} 4-\mathrm{Si}$	$122.06(16)$

Symmetry code: (i) $1-x,-y, 1-z$.

Figure 2
The packing of compound (2), projected parallel to the a axis. Radii are arbitrary.

Methyl H atoms were identified in difference syntheses, idealized and then refined using rigid methyl groups $(\mathrm{C}-\mathrm{H}=0.98 \AA$ and $\mathrm{H}-$ $\mathrm{C}-\mathrm{H}=109.5^{\circ}$), allowed to rotate but not tip.

Data collection: P3 (Nicolet, 1987); cell refinement: P3; data reduction: $X D I S K$ (Nicolet, 1987); programs) used to solve structure: SHELXS97 (Sheldrick, 1990); programs) used to refine structore: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support from the Fond der Chemischen Industrie is gratefully acknowledged. We thank Mr A. Weinkauf for technical assistance.

References

Christensen, D. H., Hopf, H., Klaeboe, P. \& Powell, D. L. (1973). Spectrochim. Alta Part A, 29, pp. 7-9.
Jones, P. G., Bubenitschek, P., Hopf, H. \& Stamm, R. (2002). Acta Cryst. E58, o277-o278.
Nicole (1987). P3 and XDISK. Nicole Instrument Corporation, Madison, Wisconsin, USA.
Sankararaman, S., Hopf, H., Dix., I. \& Jones, P. G. (2000). Eur. J. Org. Chem. pp. 2699-2702.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stamm, R. (1992). PhD thesis, Technical University of Braunschweig, Germany.
Traetteberg, M., Paulen, G. \& Hopf, H. (1973). Acta Chem. Scant. 27, 22272229.

